Explorations

Future Paths of Phenomenology

1st OPHEN Summer Meeting

Repository | Journal | Volume | Article

237640

Human and machine interpretation of expressions in formal systems

Herbert A SimonStuart A Eisenstadt

pp. -

Abstract

This paper uses a proof of Gödels theorem, implemented on a computer, to explore how a person or a computer can examine such a proof, understand it, and evaluate its validity. It is argued that, in order to recognize it (1) as Gödel's theorem, and (2) as a proof that there is an undecidable statement in the language of PM, a person must possess a suitable semantics. As our analysis reveals no differences between the processes required by people and machines to understand Gödel's theorem and manipulate it symbolically, an effective way to characterize this semantics is to model the human cognitive system as a Turing Machine with sensory inputs.

Publication details

Published in:

(1998) Synthese 116 (3).

DOI:

Full citation:

Simon Herbert A, Eisenstadt Stuart A (1998) „Human and machine interpretation of expressions in formal systems“. Synthese 116 (3), –.